Three coins are tossed. Describe Three events which are mutually exclusive and exhaustive.
When three coins are tossed, the sample space is given by
$S =\{ HHH , \,HHT , \,HTH ,\, HTT , \,THH , \,THT , \,TTH , \,TTT \}$
Three events that are mutually exclusive and exhaustive can be
$A:$ getting no heads
$B:$ getting exactly one head
$C:$ getting at least two heads
i.e. $A=\{T T T\}$
$B =\{ HTT , \, THT, \,TTH \}$
$C =\{ HHH , \,HHT ,\, HTH , \,THH \}$
This is because $A \cap B=B \cap C$ $=C \cap A=\phi$ and $A \cup B \cup C=S$
A letter is chosen at random from the word $\mathrm {'ASSASSINATION'}$. Find the probability that letter is a vowel.
Three coins are tossed once. Find the probability of getting at most $2$ heads.
For the two events $A$ and $B$, $P(A) = 0.38,\,$ $P(B) = 0.41,$ then the value of $P(A$ not) is
Two dice are thrown. The events $A, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
Describe the events $A$ or $B$
The probability of getting number $5$ in throwing a dice is